Colles de Maths - semaine 17 Lycée Aux Lazaristes

Julien Allasia - ENS de Lyon

Questions de cours

- Théorème de Heine
- Approximation de fonctions continues par morceaux par des fonctions en escalier
- Convergence des sommes de Riemann
- Formule de Taylor avec reste intégral
- Inégalité de Taylor-Lagrange

Uniforme continuité

Exercice 1 Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction uniformément continue. Montrer qu'il existe $a \in \mathbb{R}$ et $b \in \mathbb{R}$ tels que

$$\forall x \ge 0, |f(x)| \le ax + b.$$

Exercice 2 Montrer que la fonction $x \in \mathbb{R} \mapsto \sin(x^2)$ n'est pas uniformément continue.

Développements limités

Exercice 3 Déterminer le développement limité à l'ordre 8 de Arcsin en 0.

Exercice 4 Déterminer le développement limité à l'ordre 5 de $\ln\left(\frac{\operatorname{th} x}{x}\right)$ en 0.

Exercice 5 Déterminer un équivalent en ∞ de $u_n = \cos(\pi \sqrt{n^2 + n + 2})$.

Exercice 6 Déterminer la limite de la suite définie par

$$u_n = \left(e - \left(1 + \frac{1}{n}\right)^n\right)^{\sqrt{n^2 - 1} - n}.$$

Exercice 7 Déterminer un développement généralisé à trois termes en $+\infty$ de $x \exp\left(\frac{x-1}{x^2+1}\right)$.